
Modelling tasks: a requirements analysis based on

attention support services
Joona Laukkanen
+358 (0)44 3651 777

joona.laukkanen@aup.fr

Claudia Roda
+33 (0)65 01 42 75

croda@aup.fr

Inge Molenaar
inge@ontdeknet.nl

ABSTRACT
In this paper we discuss the relevance of task models in the
definition of Contextualised Attention Metadata and claim that
task models indeed are important and useful in this context. When
actions peformed by a user can be interpreted in the context of
what the user is doing when that action occurs, the task he is
trying to complete, a lot of reasoning can be based on this context.
In particular, we will discuss what task oriented services the use of
task models makes possible and concentrating on a few of these
services, investigate what requirements these services inflict on
the task model. Also, we present the work we have done so far on
the task model that we have implemented for the Atgentive
system.

Categories and Subject Descriptors

General Terms

Keywords

context, attention, contextualized attention metadata, learning,
task modelling, intelligence, reasoning

1. INTRODUCTION
Task models represent a very important element in the definition
of Contextualised Attention Metadata (CAM). As CAM aims at
tracking resources usage, identifying the specific context in which
such usage takes place enables a much better understanding of the
value of each resource [10]. The task within which a resource is
used is a very important element of such contextual definition. For
example, in order to truly understand resource usage it would be
important to distinguish whether a user accesses a book review

because he is writing a research paper, or because he is preparing
a reading list for a course, or because he is selecting gifts from a
wedding list. These three types of usages correspond to access to
the resource book review in the context of different tasks. The
definition of users' tasks is therefore one of the essential elements
for the identification of the context of resource usage.

Modelling user tasks in a manner that is both complete and
operational is far from being an easy undertaking. Based on the
work done in the AtGentive project [2, 16, 17, 19], this paper
discusses how task may be modelled in order to support the
implementation of attention management services. In the process
we will also highlight another important relation between CAM

and task modelling, i.e. the fact that not only (as mentioned
above) tasks may be associated to resource access, but also
resources may be associated to task descriptions.

In the context of the AtGentive system a task represents the target
of an attentional focus (e.g. writing a paper, accessing some
resource, ...). Since we aim at applicability in combination with a
number of different types of applications, the key design issue
with the definition of tasks has been to make it as application
independent as possible. In particular, the questions of task
granularity, task structure, and task attributes, have been
addressed.

In section 2 we give a brief description of the AtGentive system.
We summarize the goals of the project, introduce the different
modules of the system, and explain how the Reasoning Module
provides functionalities supporting users' attention allocation. The
analysis of such functionalities has provided us with the most
critical requirements for the AtGentive task model. Whilst the
AtGentive System aims at providing many task-oriented services,
in this paper we concentrate only on those that support
interruption management and task switching. In section 3 we
discuss the requirements that these services impose on task
modelling. Section 4 briefly overviews the issues commonly
encountered in task modelling, and section 5 details the AtGentive
task model.

2. THE ATGENTIVE SYSTEM
The objective of the AtGentive project is to investigate the use of
artificial agents for supporting the management of the attention of
young or adult learners in the context of individual and
collaborative learning environments.

The Atgentive system observes the user's activity and generates
interventions aimed at supporting his/her attentional choices.
Such interventions may either be designed to help users sustaining
their current focus of attention (e.g. help user to find the best way
to complete a task), or they may be designed to shift the user's
attention to a different focus (e.g. communicate important
information that has become available).

The main components of an Atgentive system include: (1) one or
more applications that communicate with (2) a reasoning module,
and (3) one or more user tracking components providing
information about the users activity – see figure 1. Applications,
users, and tracking modules inform the reasoning module about
the state of the user and the environment by generating events.
The reasoning module supports the user in his attentional choices

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Claudia Roda
Note
	• 	Laukkanen, J., Roda, C., & Molenaar, I. (2007) Modelling tasks: a requirements analysis based on attention support services. Proceedings of the Workshop on Contextualized Attention Metadata: personalized access to digital resources CAMA 2007 at the ACM IEEE Joint Conference on Digital Libraries, June 17-23, 2007 – Vancouver, British Columbia, Canada

Figure 1 – A simple schema of an Atgentive system

by generating interventions that are then sent to the user through
the application.

Events generated by the application either describe the user
activity (e.g. the user has started working on a certain task) or
relevant changes in the environment sensed by the application
(e.g. new information is available for the user).

Events generated by the user may describe his/her preferences
(e.g. "don't interrupt me when I am working on this task”), or
provide a direct feedback on the reasoning module's interventions.

Finally, The tracking devices monitoring the user physical state
and activity may generate events describing the user keyboard
activity, the level of noise in the room, or the presence (or
absence) of the user from the screen.

On the basis of these events the reasoning module (which is
implemented as a multi-agent system) tracks what the users
current focus is, then creates a list of possible alternative foci, and
finally, evaluates those alternative foci and, using interventions,
communicates those foci (if any) that seem to be most beneficial
to support the user attention.

While processing events, the reasoning module maintains an
optimized list of foci that have been identified as most relevant for
the user. Each focus is composed of a target, a priority, and a
state. Possible states are: current, inactive, or suspended.
Normally one of the foci is active (this is the user's current focus).
Suspended foci are inactive foci that have been previously active.
Inactive foci are those that the reasoning module has evaluated as
interesting for the user but the user has never activated (e.g. the
focus associated to an email that the user has not yet read). The
priority is an estimate of how important/urgent is the task
associated to the focus for the user. The target of the focus is
either a user task or a message. A user task is an instance of a
generic task for the specific user in the specific situation (see
section 5.1). A message is something that needs to be
communicated to the user without any concrete actions related to
it, e.g. some motivational feedback for a learner who has
completed an assignment.

Whilst the reasoning module is designed as an application
independent, general purpose entity capable of generating
suggestions about attention management, within the Atgentive
project it is being tested in the framework of two different

applications: AtgentSchool, and AtgentNet. AtGentSchool is
eLearning platforms for elementary school aged children and
AtGentNet is a virtual community platform supporting knowledge
exchange in knowledge communities.

3. TASK ORIENTED SERVICS IN

ATTENTION AWARE SYSTEMS
In the context of the AtGentive project we have identified several
task-oriented services aimed at supporting learners and knowledge
workers in environments characterised by frequent interruption
and multi-tasking. These include: Interruption management,
Support to task switching, Orienteering within resources (e.g.
searching and ranking), and Self and Community awareness.

For sake of brevity, in this section we only discuss the first two
services with the aim of detecting the characteristics that a task
model should have in order to enable the implementation of such
services.

3.1. Interruption management
Interruption management services may either automatically select
the time and mode of presentation of newly available information,
or they may provide notification services that help the user
making the decision on when to attend newly available
information.

With respect to interruption management, the task model should
enable reasoning about cost/benefits of interruptions and allow
determining the most appropriate time for interruption.

3.1.1. Enabling reasoning about the cost/benefits of

interruptions
In order to decide if to interrupt a user in the first place, the
system must be able to consider the costs / benefits of an
intervention for the user.

For example, the system could decide to intervene and suggest
that the user attends the newly available resource if it can be seen
to benefit the user, i.e. if:

[a] the resource is relevant to the users current focus or

[b] the resource is relevant to an inactive or suspended task
with a high priority

Note that a resource may be relevant to a task both if it is relevant
to the task or if it is relevant for a sub-task of that task.

Further considerations may intervene if enough knowledge about
the user tasks is available. For example, in case [b] above
notification may be delayed if the user is about to complete the
current task. Observatory studies report that returning to long term
projects, is particularly challenging and makes such tasks
potentially more vulnerable to the harmful effects of interruptions,
compared to more common, shorter tasks, such as writing e-mails
[7]. Besides the expected time that a task on average takes to
complete, the number of subtasks within a task (or maybe the
number of leaf tasks or suspended leaf tasks) and number of
windows and resources that need to be available could well aid at
determining if a task is a long term project and hence, interrupting
it is more costly than interrupting some shorter tasks.

Consequently in order to reason about the cost/benefit of
interruptions, the task model should make it possible to:

[REQ 1]identify the user's current task

[REQ 2]identify the priorities of the current task and of other
(inactive or suspended) tasks

[REQ 3]identify the resources that may be relevant to a task

[REQ 4]identify the state of advancement in execution of
tasks

3.1.2. Determining the most appropriate time for

interruption
Several studies have demonstrated that the exact time when an
interruption is presented may make a very significant difference
on both how easily the information presented is acquired by the
user, and on how much disruption it generates in the task being
interrupted [1, 6].

In order for the system to determine the most appropriate time for
interruption,

[REQ 5]the task model should support the description of task
hierarchies.

As noted by Bailey et al. [4] when tasks are organized into
hierarchies the task model can be used to infer "breakpoints" i.e.
times when interruptions are less disruptive for the user. Bailey
and his colleagues [1,5] represent tasks as two level hierarchies
composed of coarse events further split into fine events (for
example, a coarse event would be the selection of the email
application, which would then be further decomposed in selecting
the email application, typing in the username, and typing in the
password). The authors then measure the impact of interruptions
as they occur at various points within these hierarchies and
demonstrate that the best times for interruptions correspond to
coarse breakpoints. The availability of such a hierarchical task
model enables the system to infer the best time for interruption. In
the Atgentive system, when there is a switch in the users current
task, the magnitude of the break in attention is evaluated on the
basis of the depth of the task in the task hierarchy (see below).
Further, a shift to the next subtask can be identified as a low
strength break in the users attention whilst a jump to a task that is
not a child or a parent of the current task may be interpreted as
marking a stronger break in the users attention.

If tasks are organized so, that lower level tasks divide a higher
level task into logical sub-steps, the level at which a task switch to
a next subtask happens could perhaps be used to infer the
magnitude of the break in the users attention, possibly with a
more accurate value. A switch at a lower level would mark a
smaller change in attention than at a higher level. This would
however need the task model to allow specifying if a task does
indeed refine the parent task or if the parent task exists just to
group subtasks, as could be in the case of a math exercise in a
learning environment authored as a task hierarchy like [Task T1,
“exercise 1”, T1.1, “exercise 1.1”, T1.2, “exercise 1.2”, ..., Task
1.2.n, “3 + 9 / 3 = ”]. In the latter case a task switch to a next
subtasks would actually mark a smaller break in user attention on
a higher level task than when the switch to the next subtask
happens at the level of the concrete leaf tasks with the actual
cognitive work.

3.2. Support to task switching
Major motivation for services supporting task switching comes
from the observation that people can only focus on one thing at a
time and as several authors have indicated [e.g. 18], switching
from a task to another is costly. Services supporting the user with

task switching operations such as restoring task context, task
reminders, and support for task continuation could well be
introduced if a comprehensive task model exists..

3.2.1. Restoring task context
When task switches and interruptions are frequent, the activities
required to restore the task context of a resumed can be expected
to result in a significant increase in cognitive load. A diary study
tracking the activity of knowledge workers to investigate these
effects, reported that participants rated switching to tasks that
were previously interrupted to be significantly more difficult than
to others, that the resumed tasks were in fact twice as long as
other, more short-term projects and that they required
significantly more resources than other tasks [7]. Automatically
providing access to such resources when a task is resumed would
represent a significant help to users. Providing such service
requires that:

[REQ 6]The task model associates to interrupted tasks
information describing the resources in use when the
task was interrupted.

3.2.2. Task reminders
Another problem related to switching tasks is one encountered
frequently when a task needs to be performed at a specific
moment (at an absolute time or in response to some event).
Prospective memory failures, which occur when something cannot
be remembered at the right time, may account for up to 70% of
the memory failures in everyday life [14]. This has been shown to
have a very eminent effect on performance in work and learning
environments. Also, these memory failures intervene differently in
different age groups.

Providing services that remind users of important dates and
deadlines, or notify them of certain events could be used to
alleviate this threat of prospective memory failures daunting to so
many activities planned to take place in the future. Further, task
reminders could prove particularly useful to help users remember
tasks that they have suspended earlier as a study has reported that
in fact over 40% of tasks that have been interrupted, are not
resumed again [15]. For example if a user suspends his current
activity and starts to work on another more urgent task, the system
could remind him of the task that was interrupted once the task
has been completed.

In order to provide support with task reminders, it will be
necessary to allow:

[REQ 7]Associating to tasks information either about the
time when the task should be executed, or about the
events that should trigger the execution (or resumption)
of the task

3.2.3. Supporting task continuation and prioritisation
When there are several tasks that the user is working on in parallel
or there simply are several tasks to choose from for example when
a task has been completed, it could be beneficial for the user if
there were services that could take off some of the cognitive load
that is related to choosing the next activity. Especially when the
user might not have much knowledge of the relevant properties of
the different tasks that are available (how long a task is expected
to last, for example).

Already using the task structure it is possible to find some
potential and logical, yet arguably more or less simple

continuation options for the user. More complex and useful
guidance can be achieved by applying some timing strategy in the
evaluation, maybe preferring tasks that can expectedly be
completed before their deadline. If the evaluation also considers
priorities of different tasks or gets otherwise more sophisticated,
the reasoning could be expected to have a real effect on the
cognitive load of the user.

When a user completes a task, enabling a smooth transition to the
next activity may entail restoring the context where the choice to
start the now completed task was made. This could amount to
reminding the user of the task that was suspended when the user
moved to the current task or, reminding him of the current task
sequence (e.g. the next subtask, the next required task or the
parent of the task in the hierarchy).

In both situations the requirement for a hierarchical task structure
([REQ. 5]) is reinforced.

Further, elements that will intervene in the evaluation of valid
continuations include prioritisation (already listed as requirement
[REQ. 2]) and timing:

[REQ 8]Task model should allow the definition of task
deadlines

On a more sophisticated level also expected duration of tasks, is
required, this is listed below as [REQ 14].

4.ISSUES IN TASK MODELLING
Diaper quotes Shepherd [20] as saying that “'Task' is seldom
defined satisfactorily” and continues suggesting that this might
actually never be the case [8]. Some difficulties in defining tasks,
such as the specification of application independent task
taxonomies, have been repeatedly encountered and seem
inherently difficult. Some other issues may be easier to address
but need a comprehensive approach. For example whilst it would
not be difficult to provide adequate contextual information for
tasks, this information is often missing from task models. This
section briefly overviews what we consider the main open issues
in task modelling.

4.1. Task taxonomies
One clear problem when modelling tasks is the difficulty of
defining a sufficient taxonomy. It would be useful to classify
tasks, for example, by type of operation. Finding generic actions
or operations independent of application types has however
proven very difficult [8]. One of the few generic tasks that Diaper
& Johnson [9] were able to identify in their work on TAKD (Task
Analysis for Knowledge Description) was insert. TAKD is a
method capable of modelling tasks in a wide range of applications
and within this work insert was found common for a number of
different objects in different application domains (namely
microelectonics, automated office applications and computer
programming). Inserting could here mean either inserting text in a
word processor or a program editor or alternatively inserting
components on a Printed Circuit Board. Whilst it could be
possible to identify some actions possibly totally independent of
application domains, such as insert, the set of such actions seems
to be simply too small. Whilst Diaper [8] does not see the
development of task taxonomies as totally impossible, it is
obvious that we are far from having such a tool and probably the
definition of ontologies allowing the integration of several such
taxonomies is the most promising direction of research.

4.2. Task descriptions
Traditionally tasks have been described at the level of the
application, i.e. tasks correspond to very specific users' actions
within a specific application, e.g. create document, attach
document, submit form. In order to support the user in his
attentional choices tasks should be described at a level that better
corresponds to the user's objectives, (e.g. write a paper, complete
an exercise). This type of task description has been suggested by
some researchers [11, 13] and corresponds to the one used in the
Atgentive project. In order to achieve this objective we require
that:

[REQ 9]The task model should allow different types of
applications to define their own tasks and task structure

[REQ 10]The task model should allow describing tasks at
any level of granularity

4.3. Task attributes
Failing to provide contextual information within a task is another
pitfall of several task modelling efforts. Contextual information
such as relevant resources and users, deadlines, complexity,
priority, state of advancement, and location of the task in a task
hierarchy is something that is clearly needed for many services
supporting attention management. The inclusion of some of these
attributes is represented by several requirements already listed
above, further task attributes we have identified include:

[REQ 11]Keywords may be associated to tasks.

Keywords provide a way to relate tasks to resources (e.g. by
keyword matching)

[REQ 12]Maximum allowed idle time may be associated to
tasks

The Maximum allowed idle time specifies the time limit within
which the user is expected to act to avoid being recognised as idle
by tracking devices. This information is used both to identify
breakpoints and to provide help or solicitations to users who
seem to have difficulties continuing a task.

[REQ 13]Task difficulty may be associated to tasks

Indications on the difficulty of a task may help in the evaluation
of the cost/benefits of interruptions, as well in the selection of the
help to be provided to users.

[REQ 14]Expected duration of the task may be associated to
tasks.

This attribute specifies the average expected time to complete the
task. Combined to the task advancement indication ([REQ. 4])
enables a better evaluation of the best time for interruption.
Further, task continuation services may implement strategies in
which, under certain conditions, tasks with certain durations (e.g.
tasks that can be completed quickly) are preferred over other
tasks.

[REQ 15]Actors relevant to the task may be associated to
tasks

Relevant actors could for example include a teacher in the case of
a learning environment or the creator of a resource when the task
is simply to attend some resource. In general actors relevant to
tasks will be defined within a social network associated to the user
model. This information is both useful to evaluate the relevance of

newly available information, and to provide community awareness
services.

[REQ 16]Support tasks may be associated to tasks (see
section 5)

Currently we assume that most of these parameters are manually
entered (e.g. by the user himself, or by a teacher setting up a
learning sequence - as is done in the AtgentSchool application), in
the future we expect that the system may be capable to generate
estimates of parameters such as maximum allowed idle time, task
difficulty, expected duration time, etc. by observing how several
users act on the task, and by inferring the possible behaviour of a
specific user.

4.4. Recognising tasks
Whilst defining tasks, their structure and resources presents, as
described above, a series of challenges, a further, possibly more
complex challenge is represented by the automatic recognition of
tasks. This requires that, on the basis of the observation of user's
actions, the system is capable of matching actions sequences to
specific tasks. The problem here is that if simple sequences of
actions are observed (such as typing some characters on the
keyboard) the system may not have enough semantic information
to associate the action sequence to a specific task. In fact a very
large number of higher-level tasks may be associated to simple
action sequences. Within Atgentive we base task recognition on
three possible inputs. First, an application, which has a much
better knowledge of the semantics associated to simple user
actions may recognise that the user is working at a specific task
and communicate this information to the reasoning module.
Second, Atgentive may use its knowledge about a small subset of
all possible user tasks that are most likely to be performed by the
user at a given time, and use this information to recognise that a
simple action sequence is actually contributing to a task. Third,
the user may explicitly indicate that he is performing a certain
task.

5.ATGENTIVE TASK MODEL
The task model implemented in Atgentive's Reasoning Module
distinguishes between two different categories of tasks: main tasks
and support tasks. Main tasks are in essence anything the user
may decide to do. Support tasks are aimed at helping the user
perform a given main task and manage his attention within that
task.

5.1. Generic Tasks versus User tasks
Both main tasks and help tasks represent abstract task properties.
Whenever main tasks, or help tasks are activated concrete
instances are created as user tasks. This results in creating a
hierarchy of user tasks corresponding to the hierarchy of the main
tasks and support tasks. User tasks instantiate all the properties for
the concrete execution of that task, such as a deadline, progression
etc, for one particular user. For example, one may have a main
task "prepare lecture" which has abstract properties such a title,
and an average expected duration, and is organised in a hierarchy
of sub-(main)-tasks such as "collect resources", "create draft", etc.
each having their abstract properties. For each user, there would
then be a corresponding user task structure to actually execute the
task, with for example individual deadlines for those users.

5.2. Main tasks
Main tasks (and the user tasks that correspond to them) represent
actions the user might perform, e.g. write a paper, prepare for a
meeting, complete an assignment. These tasks can be formed into
hierarchies as pleased as all main tasks could have other main
tasks as subtasks.

A main task can then be described to consist of a number of finer
level tasks. Task T1, Writing a paper, could for example consist of
the more concrete tasks T1.1 (do research) T1.2 (write abstract),
..., T1.n (discuss future work). The hierarchical organization of
main tasks allows for varied granularity when defining tasks;
nothing forces one to define tasks at a finer level so for example
writing a paper could in some environments be modelled as a
single high level task if the task is, perhaps, known to be already
well understood by the target users. In another environment the
same task could be represented as one with a number of subtasks
(possibly on several levels). Besides allowing granular description
of task execution, subtasking can be used to specify the level at
which support needs to be provided for the user. This could in fact
be one way to author tasks; first identify how the entire task needs
to be supported (e.g. support for doing research, support for
writing the abstract, ...) and divide the task in subtasks
accordingly.

In defining task structure we have identified further requirements
for the task model these include:

[REQ 17]The task model may include a requirement level for
a task

[REQ 18]The task model may include task ordering

[REQ 19]The task model may include task visibility

These properties are tightly related to the execution of tasks at a
given moment and are useful to support task continuation (see
3.2.3) and are briefly described below.

Task requirement level

Task may be defined as optional or required. Required sub-tasks
are necessary (i.e. they must be executed) for the completion of
the parent task. Tasks defined as optional allow the user to skip
certain sub-tasks in the execution of a main task. In a learning
environment some exercise for example, may be marked as
optional.

Task ordering

The order in which a task's subtasks need to be performed could
either be specified as free for the user to choose, or mandated. In a
learning environment an assignment might for example consist of
reading a book and then writing a summary about it. Here it
would make sense to mark the ordering of the assignments
subtasks to be mandated.

Note that, if ordered execution is required, optional subtasks can
still be skipped.

In the current implementation going backwards in the execution,
even to an optional task, is currently not possible.

Task visibility

Tasks may either be visible or invisible. Invisible tasks are always
inner nodes in the task hierarchy and allow describing abstract
tasks that, although not executable, are useful to conceptualise a
certain grouping in sub-tasks. A group of root tasks that are not

related to each other could for example be grouped under one
common invisible root task. Invisible tasks could also be useful if
there is a need for a more complex ordering than what otherwise
would be allowed by the task model (without adding mundane
tasks that only include selections between subtasks).

The task model does not support certain task sequencing
constraints. For example its is not currently possible to specify the
requirement that the user completes a certain number of subtasks
(say 2 tasks out of 3).

5.3. Support tasks
Support tasks are tasks aimed at supporting the user in performing
various types of activities that the user might attend at different
stages of a tasks execution. For example, a support task might
help a confused user gaining a better understanding of the task at
hand, another support task could provide some motivational
feedback such as statistical information about the users time usage
after a task is already completed.

Support tasks differ from main tasks mainly in two ways. First,
they cannot be organized into hierarchies and they do not have
further support tasks themselves. Although hierarchies of support
tasks might be a valid concept, we don't identify a pressing need
for them and do not include the concept in the model. This helps
us also avoid introducing unnecessary complexity to the model.
Essentially for the same reason we don't consider the concept of
support tasks for support tasks. The other key difference to main
tasks is the classification of support tasks. Support tasks are
classified in two ways. First they are classified based on when
they will be relevant to the task that they support. This could
either be before (pre-task support), during (on-task support) or
after the task (post-task support). In addition, support tasks are
classified by the type of support they provide.

Based on scaffolding models of Hadwin, Wozney & Pontin,
Zimmerman & Chrunk, Azevedo & Hadwin and Wood, Bruner,
and Ross [3, 12, 21, 22] we have divided support tasks into four
categories: behaviour, cognitive, metacognitive and motivational
support tasks. Cognitive interventions have a focus on mental
activities of the user, metacognitive support is directed at
orientating, monitoring and evaluation activities, behavioural
interventions are focussed on physical activities of the user and
motivational support tasks are directed towards feelings of the
user [12]. The term scaffolding was introduced by Wood, Bruner,
and Ross [22] and it is defined as providing assistance to a student
on as-needed basis, fading the assistance as the competence
increases. The general idea behind scaffolding is that some of the
control within the learning environment is temporally transferred
from the learner to another more experienced actor to support the
learner to acquire all abilities to fully self sustain his learning.
The scaffold help supporting the execution of a task that the
student could not have done on its own and it is removed when it
is no longer necessary. Especially in innovative learning
arrangement where student are provided with more control of both
learning content and learning procedures scaffolds can support
them to deal with this increased responsibility. The task support
model allows specifying and selecting the support tasks that
assiste the learning process of specific learners based on an
assesment of their attentional states.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have identified the major requirements for a
flexible and operational task model supporting the implementation
of attention management services. We have also indicated how
most of these requirements have been implemented within the
Atgentive system. We consider the work presented in this paper
only a starting point for attention oriented task modelling and the
definitions provided will need to be both extended and further
detailed. We are currently in the process of evaluating the
performance of the Atgentive system in the two pilot environment
and we trust that such evaluation will significantly contribute to
the further development of the reasoning module as a whole and
of the task model in particular. While the task model we present
does not have the same objectives as many of the task models
presented in the field of human-computer interaction, some of
them may be used to guide future development of our model.

7. REFERENCES
[1] Adamczyk, P. D. and B. P. Bailey, 2004. If not now, when?

The effects of interruption at different moments within task
execution. Human Factors in Computing Systems: CHI'04,
New York, ACM Press.

[2] Atgentive (2005-2007). ist-4-027529-stp.

[3] Azevado, R., Hadwin, A.F. (2005) Scaffolding self-regulated
learning and metacognition – Implications for the design of
computer-based scaffolds. Instructional Science33: 367–379

[4] Bailey, B. P., P. Adamczyk, et al. (2006). "A Framework for
Specifying and Monitoring User Tasks." Computers in

Human Behavior 22(4): 709-732.

[5] Bailey, B. P. and J. A. Konstan (2006). "On the Need for
Attention Aware Systems: Measuring the Effects of
Interruption on Task - Performance, Error Rate, and

Affective State." Computers in Human Behavior 22(4): 685-

708.

[6] Czerwinski, M., E. Cutrell, and E. Horvitz. Instant
messaging: Effects of relevance and time. in HCI 2000 -
14th British HCI group Annual Conference. 2000. University
of Sunderland: British Computer Society.

[7] Czerwinski, M., E. Horvitz, et al. (2004). A diary study of
task switching and interruptions. Proceedings of the SIGCHI
conference on Human factors in computing systems, Vienna,
Austria, ACM Press.

[8] Diaper, D. (2002). "Scenarios and task analysis." Interacting

with Computers 14(4): 379-395.

[9] Diaper, D. and Johnson, P., 1989. Task analysis and systems
analysis for knowledge descriptions: theory and application
in training. In : Long, J., Whitfield, A. (Eds.). Cognitive
Ergonomics and Human-Computer Interaction. Cambridge
University Press, Cambridge, pp. 191-224.

[10] Duval, E. (2005). LearnRank: the Real Quality Measure for
Learning Materials (Tematic Dossier 06 December 2005),
Insight - Oservatory for New Technologies and Education.]

[11] Gonzalez, V. M. and G. Mark (2004). "Constant, constant,
multi-tasking craziness": managing multiple working
spheres. Proceedings of the SIGCHI conference on Human
factors in computing systems, Vienna, Austria, ACM Press.

[12] Hadwin, A., L. Wozney, et al. (2005). "Scaffolding the
Appropriation of Self-regulatory Activity: A Socio-cultural
Analysis of Changes in Teacher–student Discourse about a
Graduate Research Portfolio." Instructional Science 33(5-6):
413-450.

[13] Heath, T., M. Dzbor, et al. (2005). Supporting User Tasks
and Context: Challenges for Semantic Web Research.
Workshop on End-user Aspects of the Semantic Web
(UserSWeb), European Semantic Web Conference
(ESWC2005), Heraklion, Crete.

[14] Kvavilashvili, L., D. J. Messer, et al. (2001). "Prospective
memory in children: The effects of age and task

interruption." Developmental Psychology 37(3): 418-430.

[15] O'Conaill, B. and D. Frohlich (1995). Timespace in the
Workplace: Dealing with Interruptions. CHI ‘95 Conference
Companion, Denver, Colorado, United States, ACM press.

[16] Roda, C., Ed. (2006). Atgentive (IST-4-027529-STP)
Deliverable D1.3 - Atgentive conceptual framework and
application scenarios.

[17] Roda, C. and T. Nabeth (2006). The AtGentive project:
Attentive Agents for Collaborative Learners. First European

Conference on Technology Enhanced Learning EC-TEL'06,
Crete, Greece, Springer.

[18] Rubinstein, J. S., D. E. Meyer, et al. (2001). "Executive
Control of Cognitive Processes in Task Switching." Journal
of Experimental Psychology: Human Perception and

Performance 27(4): 763-797.

[19] Rudman, P. and M. Zajicek (2006). Autonomous agent as
helper – Helpful or Annoying? IAT 2006 - IEEE/WIC/ACM
International Conference on Intelligent Agent Technology,
Hong Kong.

[20] Shepherd, A., 1998. HTA as a framework for task analysis.
Ergonomics 41 (11), 1537-1552.

[21] Zimmerman, B., Schunk, D. (2001). Theories of self-
regulated learning and academic achievement: an overview
and analysis. In self-regulated learning and academic
achievement (2nd ed.) (pp. 1-37). Mahwah, NJ; Erlbaum.

[22] Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring
in problem solving. Journal of Child Psychology and
Psychiatry 17, 89-100.

